Testing the potential of K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan complexes in arid environments

This page lists all metadata that was entered for this dataset. Only registered users of the CRC1211DB may download this file.

Request downloadRequest download
Full Name:
Purpose of use:
Bot check:
Type all characters with this
It is case sensitive.
Citation Options
Title:Main Title: Testing the potential of K-feldspar pIR-IRSL and quartz ESR for dating coastal alluvial fan complexes in arid environments
Description:Abstract: Coastal alluvial fans (CAF) are important geo-archives due to their sensitivity to both tectonic activity and climatic changes. Thus, they can give key insights for geomorphic and sedimentary processes. In this study we test the potential of K-feldspar post infrared-infrared stimulated luminescence (pIR-IRSL) and quartz electron spin resonance (ESR) methods for dating alluvial fan complexes in arid environments. The existing chronological data from marine terraces that interact with CAF make the Atacama Desert in northern Chile an excellent setting for this research. Samples have been collected from alluvial, marine and aeolian sediments embedded in the CAF complexes, allowing evaluation of the different signal properties and bleaching characteristics of the pIR-IRSL and ESR signals over Late Pleistocene time scales. pIR-IRSL dose distributions of clast-rich alluvial fan samples are characterised by higher scatter and demonstrate heterogeneous bleaching, while matrix-rich alluvial fan deposits show rather homogeneous poor bleaching in the dose dispersion as indicated by a modern analogue sample. In contrast, marine and Aeolian deposits are homogeneously well bleached, supported by a modern littoral sample. Following the quartz multiple centre (MC) ESR dating approach (Al and Ti centres), bleaching of the different centres prior to deposition has been achieved. While the Ti–H centre provides mostly lower doses than the Ti–Li centre, in most cases the Al centre provides the highest dose values. This pattern is consistent with their respective bleaching kinetics and suggests that the Ti centre signals most likely provide the closest estimate to the true burial dose for samples with doses >200 Gy. ESR and pIR-IRSL ages are consistent at 2σ for the marine, aeolian and clast-rich debris-flow deposits, which is in agreement with existing chronological data in this area. It appears that the mode of sediment transport on alluvial fans, either as matrix- or clast-rich flows, plays an important role in sediment bleaching. While clast-rich alluvial fan deposits are likely better bleached, we cannot exclude insufficient bleaching during matrix-rich alluvial fan flows; our dating results suggest that both pIR-IRSL and ESR dating overestimate the true burial age. The combination of pIR-IRSL and MC ESR dating can be considered as a promising tool for deciphering alluvial fan formation over (Late) Pleistocene time scales.
Identifier:10.1016/j.quaint.2020.03.037 (DOI)
Responsible Party
Creators:Melanie Bartz (Author), Mathieu Duval (Author), Dominik Brill (Author), Anja Zander (Author), Georgina King (Author), Alexander Rhein (Author), Janek Walk (Author), Georg Stauch (Author), Frank Lehmkuhl (Author), Helmut Brückner (Author)
Funding Reference:Deutsche Forschungsgemeinschaft (DFG): CRC 1211: Earth - Evolution at the Dry Limit
Publisher:Elsevier Ltd and INQUA
Publication Year:2020
CRC1211 Topic:Dating
Related Subproject:C2
Subjects:Keywords: Geochronology, Dating , Luminescence Dating, Landscape Evolution, Arid Zone
Geogr. Information Topic:Environment
File Details
Data Type:Text - Article
Size:20 Pages
File Size:2.7 MB
Date:Accepted: 20.03.2020
Mime Type:application/pdf
Data Format:PDF
Download Permission:Only Project Members
Download Information:This file contains the article published in Quaternary International, in press.
General Access and Use Conditions:According to the CRC1211DB data policy agreement. © 2020 Elsevier Ltd and INQUA.
Access Limitations:According to the CRC1211DB data policy agreement. © 2020 Elsevier Ltd and INQUA.
Licence:[CRC1211DB] Data policy agreement
Specific Information - Publication
Publication Status:Published
Review Status:Peer reviewed
Publication Type:Article
Article Type:Journal
Source:Quaternary International
Source Website:https://www.sciencedirect.com/journal/quaternary-international
Number of Pages:20 (124 - 143)
Metadata Details
Metadata Creator:Janek Walk
Metadata Created:19.06.2020
Metadata Last Updated:19.06.2020
Funding Phase:1
Metadata Language:English
Metadata Version:V50
Metadata Export
Metadata Schema:
Dataset Statistics
Page Visits:274
Metadata Downloads:0
Dataset Downloads:1
Dataset Activity
A download is not possibleDownload